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50 eV, increasing perhaps to a few percent at 1000 eV. 
It is hard to see why such small amounts of metastables 
would have had a significant effect on the He-He and 
He-Ne results, since the Penning ionization cross section 
is zero in these cases. A small effect might have been 
present in He-N2, but it was not apparent. (In the He-H2 
and He-Ar measurements,20 characteristic structure was 
present due to metastables.) 

The two percent N2
+ impurity in the He+ ion beam 

(before neutralization) had negligible effect on the 
present measurements. It was found that N2+ did not 
charge transfer in He or Ne, and therefore the neutral 
beam contained no N2 in the He-He and He-Ne cases. 

A similar argument should hold for the water impurity. 
In the He-N2 case, the presence of some N2 in the 
neutralization chamber did produce one or two percent 
N2 in the He neutral beam. However, the N2-N2 cross 
section is not large enough to cause a significant effect 
on the results. 

It appears that structure is present in the He-He 
ionization cross section versus energy curve. Berry21 

has reported structure in the ionization electron energy 
distribution for He-He ionizing interactions. It is 
probable that these effects are related. 

21 H. W. Berry, Phys. Rev. 121, 1714 (1961). 
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Kinetic equations are obtained for the purpose of describing the temporal evolution of two-time (condi­
tional) probability densities for locating subsets of particles moving within an equilibrium assembly. The 
reduction and solution of the equation for the single-particle density is investigated in considerable detail. 
Information concerning the short-time evolution of the probability densities is explicitly retained, in order 
that the applicability of the equations for studying the properties of relatively dense systems be preserved. 
The expressions for probability densities are used to study the properties of certain associated correlation 
functions. Expressions for the momentum autocorrelation function are derived. Similarly, certain features of 
the cross sections for the scattering of slow neutrons are investigated. 

I. INTRODUCTION 

THE statistical mechanical foundations of linear 
transport processes and irreversible thermo­

dynamics are now firmly established.1,2 Parameters 
appearing in the latter macroscopic theories may be 
related, quite generally, to appropriate time-relaxed 
correlation functions describing the motions of the 
constituent particles of a given system of interest. On 
the other hand, these general relationships are, in a 
certain sense, only definitions; there yet remains a 
rather difficult problem, only partially resolved, of how 
best to evaluate these expressions when performing 
explicit calculations. 

A related difficulty appears in the calculation of 
cross sections for the scattering of slow neutrons. It has 
been shown that the latter can be obtained from ex-
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fulfillment of the requirements for the Ph.D. degree. Research 
supported in part by the U. S. Atomic Energy Commission. 

t Atomic Energy Commission Predoctoral Fellow. 
% Present address: Faculte des Sciences, University Libre de 
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i M. S. Green, J. Chem. Phys. 20, 1287 (1952); 22, 398 (1954). 
2 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 

pressions for time-relaxed probability densities G(r,t) 
describing the spatial motion of constituent particles 
of the scattering medium.3,4 In general, when attempting 
to calculate G(r,t) by considering only the spatial 
motion of the particles of the system, semiphenomeno-
logical kinetic equations or models are employed.5,6 

However, at least in principle, the spatial probability 
density may be obtained in a more general fashion by 
performing appropriate integrations over a probability 
density function defined, as well, over the momentum 
space of the particles. The advantage of this procedure 
is that the latter may be obtained by reduction from 
an w-particle Liouville equation. 

Similarly, the correlation functions mentioned in the 
previous paragraphs, i.e., those appropriate to analyses 
of macroscopic transport, may also be obtained from 
generalized time-relaxed probability densities. Although 
it is often profitable to devise individual calculational 
programs specifically for the direct calculation of a 

3 L. Van Hove, Phys. Rev. 95, 249 (1954). 
*R. J. Glauber, Phys. Rev. 98, 1692 (1955). 
8 A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126, 

997 (1962). 
6 S. Yip, dissertation, University of Michigan, 1962 (unpub­

lished). 
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particular transport quantity,7 '8 greater generality sug­
gests a study of the evolution of the basic probability 
densities themselves. The latter is the primary concern 
of this paper. 

First, a procedure must be chosen to reduce the 
Liouville equation to appropriate kinetic equations for 
the probability densities of interest. There are, of 
course, a number of methods which have been proposed 
for the study of the evolution of general probability 
densities.9"11 However, these prescriptions are most 
appropriate for describing the evolution of an assembly 
for time periods commencing after an interval which is 
much larger than a representative "collision time" for 
the system. The theory of dilute gases is, for the most 
part, predicated upon such assumptions. However, it 
must be concluded that any procedure which requires 
imposing asymptotic time limits will be inapplicable to 
the study of the properties of relatively dense fluids. 
Indeed, similar objections can be raised even for dilute 
systems if one is ultimately interested in studying 
frequency-dependent transport quantities at high fre­
quency. In the latter case, a kinetic description which 
retains a memory of the initial value of the probability 
density is essential.12 

For these reasons, we consider the derivation and 
solution of kinetic equations which retain information 
about the short-time behavior of the system. For this 
purpose, an elaboration and modification of the pro­
jection operator procedure introduced by Zwanzig13 in 
similar studies of irreversible statistical mechanics is 
employed. A projection operator is chosen so that the 
collision integral appearing in the kinetic equations can 
be expanded in a series which demonstrates successively 
higher contributions of the internal potential energy of 
the assembly. 

As is well known, difficulties are frequently en-

7 S. A. Rice, J. Chem. Phys. 33, 1376 (1960). 
8 E.g., S. Fujita and F. Mayne, Physica 29, 1201 (1963). 
9 N. N. Bogoliubov, in Studies in Statistical Mechanics, edited 

by J. de Boer and G. E. Uhlenbeck (English transl. by E. K. 
Gora) (North-Holland Publishing Company, Amsterdam, 1960), 
Vol. I. 

10 J. G. Kirkwood, in Rendiconti delta Scuola Internazionale di 
Fisica "Enrico Fermi," Corso X (Nicola Zanichelli, Bologna, 
1959). 

1 1 1 . Prigogine, Non-equilibrium Statistical Mechanics (Inter-
science Publishers, Inc., New York, 1962). 

12 For example, suppose that the actual temporal behavior of a 
time-relaxed correlation function were C(t)—aie~Xlt+a2e~X2t, with 
X2^Xi>0. An asymptotic kinetic equation might correctly provide 
the first term on the right-hand side of the latter expression, but 
would fail to provide the second. 

Suppose, also, that the transport quantity appropriate to C{t) 
were proportional to the real part of its Fourier time transform 
[such is the case for the incoherent scattering function, cf. Eqs. 
(4.7) and (4.10), below], the latter being C(u) oc [>i\i/Xi2-fw2) 
+ (a>2\2/M2+c02)2> Thus, for co>X2, it is seen that the measurement 
of the transport quantity primarily probes that contribution to 
C(t) which describes the short-time behavior of the system. 

An asymptotic kinetic equation is assumed valid for £$>r, 
where r is a typical time describing phenomena occurring on a 
"short-time scale." Thus, at the least, for frequencies co~l/r, 
one would expect an erroneous result to ensue from the use of the 
asymptotic equation for the calculation of C(t). 

13 R. W. Zwanzig, J. Chem. Phys. 33, 1338 (1960). 

countered when performing coupling constant ex­
pansions for systems characterized by interaction 
potentials containing strong short-range repulsive cores. 
I t is often found that the individual terms appearing 
in the resulting expansions are, strictly speaking, of 
infinite magnitude. In these circumstances, it is neces­
sary either to sum over an infinite set of expansion 
terms, or to make various approximations to argue 
boundedness of a chosen noninfinite subset of expansion 
terms. However, judicious choice of the projection 
operator insures that the expansion parameters, in the 
series appearing below, are convergent even for po­
tentials with strongly repulsive cores. The logical 
difficulty which might otherwise be associated with 
expansion in terms of a 'small' parameter characteristic 
of an infinitely strong interaction is thus eliminated. 

Hence, equations are derived in Sec. I I to provide 
the temporal evolution of time-relaxed probability 
densities for groups of particles moving through an 
equilibrium assembly of like particles. Detailed investi­
gation is made of the kinetic equation for the one-
particle density [ that is, for / i (x i ; / |xi0), defined as the 
probability density for finding a specified particle in 
the neighborhood of the 6-dimensional phase point, 
Xi^(qi,pi), at time t, given that at / = 0 , the particle 
was located exactly at x l o ] , 

In Sec. I l l , procedures for solving the equation for 
/ i are introduced. Expressions for momentum densities 
and associated correlation functions are obtained. By 
explicitly retaining terms to fourth order in the forces, 
one is able to see in what manner negative correlations 
may be manifest in the autocorrelation function. 

Similarly, aspects of the temporal behavior of the 
configurational probability density G8(r,t) are investi­
gated in Sec. IV. Consideration is given to related 
expressions for the incoherent cross section for low-
energy neutron scattering. 

II. KINETIC EQUATIONS 

a. General Considerations 

Let us commence by obtaining kinetic equations to 
describe the temporal evolution of reduced time-relaxed 
probability densities. First, let 

fn(Xn;t\XS0) (2.1) 

represent the conditional probability density for finding 
a specified ^-particle system in the neighborhood of a 
point Xn^ (qi,- • -,qn; pi,- • -,pn) of T space, at time t, 
given that at J=0 , a designated ^-dimensional subset of 
particles was located at the point XSQ of a pertinent 6s-
dimensional reduced phase space. Marginal densities 
are to be obtained from /n(X»;/ |X a o) by integrating 
over extraneous coordinates, i.e., 

/a,&(qi,* • -,qa; Pi,* • -,p&; ^|XS0) 

= / dqa-fi* • 'dqndp^.i' • 'dpnfn(Xn; / |Xg 0). (2.2) 
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As is well known, once the initial state, /»(X»; 01 X«0), 
is specified, /n(Xn;*|X,0) is determined for all time 
according to the Liouville equation. The latter may be 
written in the following convenient form: 

d tfn (Xw; 11X80) = Lfn (Xw ; t \ XSQ) , (2.3) 

where L is the Liouville operator L=Lo+Li+L2 with 

appearing in Eq. (2.6) vanishes. (In the following dis­
cussion, it will be assumed that /eq[n](Xn) is the 
canonical density, i.e., that the system, taken as a 
whole, is in equilibrium.) 

As a consequence of Eqs. (2.4), further simplification 
ensues. The first term on the right-hand side of Eq. 
(2.6) becomes 

» Vi d 
£ o ^ - E ; (2.4a) &8L<?sfn(Xn;t\X80) = 

• d / d 

s pi d 

-E 
*-i m dqi 

^ I I I - V { \ < u - t o \ ) . ( — ; (2.4b) + i E Z — M — - — ) " " ^ 7 ~ m 

i^k dq, \dVj- dpk/ ^*> dq{ \dpi d p / %s=1 dqi dpi 

n d 3 

*==i dqi dpi 
(2.4c) 

To obtain Eqs. (2.4), it has been assumed that all 
forces be velocity-independent. Also, the internal 
potential energy is taken to be the sum of two-particle 
central force interactions, where V(|q»—Oil) is the 
potential between the ith and jth particles. Uli] is 
the external potential acting upon the ith particle. 

To obtain a kinetic equation for /«(XS; 2|X80), let us 
introduce the following operators: 

X/S(XS ;* |X80). (2.8) 

The latter arises as follows: Remember that L is written 
as the sum of three terms. From the L\ term 

V*Li(S>sfn= / dx 

<P8= / dx, ls+1' -dxn; 
(2.5) where 

G>,=s/w,,(xH.i,- • - ,xn |xv • -,x«; 0)(P,, 

where fn\s designates the stationary conditional proba­
bility density for finding an n-s particle subsystem in 
the neighborhood of phase point {xa+i,- • -,xn} at time 
t, given that (at the same time) the coordinates of 
particles 1 —> s are xi, • • •, xs. Notice that (P, is a pro­
jection operator, since (P,2 Fcn(Xn; Q = (P, Fcn(Xn; t). 

Now, following Zwanzig,13,14 the following identity 
may be obtained from the Liouville equation: 

dt[®sfn(Xn; * |XJ ] = P.L[(P./n] 

+ / dT®sLe^l~(?lL(l-(S>s)Lfn(t-r) 

[ n n 0 

*>*/ dqi 

(—- — )]fnufs 
\dp, dpy/J 

/ d d\ 

-vA )/.«), 
i \dpi dpj/ 

r r * n e d -i 
dxs+v-dxn E E —Vij /»i.=0 

J Li=i y-«+i dqi dpi J 

8 8 S 

=*££• 

+3Ue<<1-(P.>£(l-<Ps)/n(Xn;0|Xso). (2.6) 

However (cf. Appendix A), 

/ . (X. ; 0|Xw) = L/Wt»l(X,,)//«IW(X.)] f [ 5«(xi-xio) 

= fnufl6«(x~xia), (2.7) 

so that, in virtue of Eq. (2.5), the inhomogeneous term 
14 R. W. Zwanzig, in Lectures in Theoretical Physics {Boulder 

Lectures) (Interscience Publishers, Inc., New York, 1961), Vol. 
I l l , p. 106. 

by virtue of integration over an odd function of the 
configurational coordinates. (To ensure that fn\8 be a 
symmetric function of the interparticle coordinates, 
let it be assumed that the external field be zero for 
t<0.) The deduction of the L0 and L2 terms in Eqs. (2.8) 
is straightforward and follows from the assumption that 
(P integration of gradients of fn yields zero-valued 
boundary terms. 

Hence, in virtue of Eq. (2.8), the kinetic equation 
describing the evolution of the s-particle density is 
given by 

dtfs(Xs;t\XJ-ZH8;fsl 

= 3>.f dTLe*«-V>L(l-<?.)Lfnl8 
Jo 

X/ 8(X*;;-r |X, 0) , (2.9) 

with initial condition 

/ . (X . ; 01Xso) = n a(xr-Xfc). (2.10) 

Hs is the reduced ^-particle Hamiltonian; the brackets 
are the Poisson brackets. 

The complicated non-Markorfian collision operator 

file:///dVj-
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appearing on the right-hand side of the above equation and 
accounts for the interaction of the s particle subsystem (P==fnll(p. (2.12) 
with the remaining n-s particles. Were there no such AT , . . . . . 
interaction, the collision integral would, indeed, be Also, for the initial condition, 
equal to zero, and the left-hand side of the equation / i (x i ; O|xi0) = 56(xi—xi0). (2.13) 
would describe the temporal evolution of a probability-
density defined over a reduced, isolated, T space of 6* T h e collision integral appearing in Eq. (2.11) may be 
dimensions. expanded as a series of terms which successively demon-

The effect of the operator defined by Eq. (2.5) is to s t r a t e increasing orders of the strength of interactions 
project the initial distribution into the collision kernel; between particles. First, employ the following identity : 
although at first glance only the ^-particle probability 
density seems to appear in the collision integral, in 
reality, a modified fz-body problem persists. However, 
density seems to appear in the collision integral, in e«(A+B) — eaA\ J_J_ / d/3e~PABe+l3U+R .{i+f 5) (2.14) 

an advantage to obtaining the kinetic information in obtain 
this way is that, because L operators in the collision /•* 
integral occur always multiplied by fn\Sj coefficients ILfJ^® I ^rieTlLo(1~(P)Z(l — (P)Lfn\i 
appearing in potential energy expansions of the kernel J o 
will be finite even for intermolecular potentials con- rt 
taining hard core repulsive terms. X/i(xi: t—r\Xi0)+(P / drieTlLoa~(p) 

Jo 

b . Simplification of the Collision Integral ^ / dT2e~T2Lo(1~(P)Li(l — 6>)eT2Lo(l~(?) 

for / i (* i ;* |* i 0 ) J0 

Attention shall now be focused upon the kinetic X Z ( l - ( P ) Z / n | i / ( / - r ) H . (2.15) 
equation for the one-particle time-relaxed density in Next, noticing that15 

the absence of external forces. From Eq. (2.9), the 
temporal evolution of / i (xi; 11 Xi0) is seen to be deter-

(PerLo(l-(P)==(Pj (2.16) 

mined by erLo<1-^ = [eTLo(l —(P)+(P], (2.17) 
p* d and 

a«/i(xi;/|xi0)H / i CPZ 1e-^^-"«^>/i(x 1 ; / |x l o) = 0 , (2.18) 
m dqt 

after performing the following coordinate transfor-
dre+rLa-6»L(l-(p)Lfnllf1(t-T) m a t i 0 1 1 

_ ? ^ ( q ~ q i ) , i ^ l , (2.19) 

where ' ' one finds that the integral can be written as an infinite 

i' 
Jo 

(P== / dx2- - -dxn, 

/« , ! = (Zg n / l2)^-^Cqi, . ,qn) ] J / e q ( p < ) ? 

»t rT\ f rr~l 

series of terms, 

/ [ / i ] = f / M C / i ( x i : / [ x l 0 ) ] (2.20) 
r=l 

such that, for r > l , 

i r t fT\ f Tr~l 

9(B) dn. drr--\ i r r £ 1 ( S ) { e x p [ ( r 2 - r 3 ) £ o + ( S ) ] ( l - ( P ( a ) ) } 
Jo Jo Jo 

X£i{exp[(r3-T4)i3o- f]S-(T3_T4)(l-(P)}- • • £ i{exp[ ( r r - i -T r )£ 0
+ ]S- ( r r - 1 - r r ) ( l - (P)} 

X £ i C e x p ( r r £ 0
+ ) S - r r ( l ~ ( P ) ] £ ( S ) £ + ( S ) / n , 1 / 1 ( / - r ) } , (2.21) 

and, for r = 1, 

JM = 3>(B) f J r £ ( B ) £ + ( B ) / „ u ( B ) / i ( x i ; / - r | x i o ) . (2.21a) 
Jo 

15The first of these relationships is established as follows: ^rI'o(1~«>) = ^[l+ri:o(l"-(P)+ir2Zo(l-(P)Zo(l-(P)-} ] . But 
d/dqi, *V0, yields boundary terms which —»0 as the volume of the system, O, —> oo. Thus, (?L0(1 — (P)=(P(— (pi/m)- (d/dqi)) 
X(1~(P)=0, in virtue of lP(P=(P. Similarly, &L0

n(l-<?)*=0. Thus, the identity Eq. (2.16) is established. Equation (2.17) is 
established in a similar way. Equation (2.18) holds because V(qh • • «,q„) is an even function of the interparticle coordinates, whereas L\ is 
an odd function of these variables. 
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In the above expressions, 
£ ( B ) s £ 0 ( B ) + £ i ( B ) ; £ + ( B ) - £ 0

+ ( B ) + £ i ( S ) (2.22) 
with 

n (p i -P i ) d Pi d , 
£ 0 ( B ) S - 5 : , (2-2 3 a) 

d f d d \ d / d d \ 
^(S)--E—*(&)•( )+JEE—*( l &-&!)•( ) , (2.23b) 

d f d d \ d / d e \ 
£ i ( E ) - - E -

and 
Pi d 

£o + (B)s<C 0 (B)+ . (2.23c) 

I t is to be noted that / n j i (S ) depends only on the coordinates of particles 2—>n. 
S_T is the streaming operator (Taylor's series operator), 

/ Pi d \ 
S_r = exp( - r (2.24) 

having the property that, when acting upon a function of qi, pi, t, §>~T fcn(qi; pi) = fcn[qi~ (pi r /w); p j . (P(S) is 
defined by 

8>(B)s /<*&•• -dfnrfps-' -rfp», (2.25) 

there being similar definitions for (P(B) and / n | i ( B ) . As a consequence of performing the transformation, fn\i is 
not a function of Xi. This latter property will be of considerable aid in the following analysis. 

One must yet determine criteria for grouping various terms in the collision integral series, Eq. (2.20). The 
identification of necessary expansion parameters is, of course, one of the desired results of this study. In this 
respect, it may be asserted a posteriori that further reduction of interaction terms will demonstrate the intrinsic 
importance of constants of the following form: 

* ( & ) — - * ( { * ) • (2.26) 

<£(£) is the pair potential energy expressed as a function of the distance between particles and 

O*-1 fd^k+v • •<*&. exp[ - |87 (&, - • -,?„)] 

«»(&,"•,?*) = • (2-27) 

/ ' 

I t may now be asserted that the criterion for grouping integration shows the equivalence of seemingly different 
terms according to interaction strength is that M, expressions. 
defined as the sum of the differentiation indexes ap- Consider further simplification of the collision 
pearing in Eq. (2.26), be the same for all members of integral. Because (P(S)d/d& yields boundary terms in 
the group. In other words, defining £4- which are zero in the limit of volume of the assembly 

growing large, (P(S)<£o+/n|i=0, so that, from Eq. 

M - E ! > ; , ; , (2.28) (2'21a>> t 

/ ^ [ / i ] ^ ( S ) / <fo| jei- W m i / i ( / - r ) . (2.29) 

all terms of the type (2.26) for which M is the same are ° ^ 
of equal "strength." Let us now impose the following lemma (which arises 

To readily see that all terms in the same group are from the fact that (d/d%j)<f>( \ £,— %k |) is an odd function 
indeed of equal magnitude, make the approximation in the variables (|&— &| ) , whereas / n | i (B ) is an even 
gfcocexp — /3V(h,' • -,?fc); in this case, simple partial function of these variables). 
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Lemma: If 

Q^^(S)[£ i (S)£o + (B)<£o + - • • 

£i<Ci£o+---]/»li(B) (2-30) 

is to be nonzero, the integer representing the number 
of times that <£i terms appear, when added to the 
integer signifying the number of times <£o+ appears, 
must be even. 

In virtue of this requirement, noting also that (Pd/dp* 
=$0 for IT^\ and remembering that all particles 
have been assumed to be alike, it can be readily shown 
that 

X(2) 

where 
m A d i v « P i l f ( / - r ) , (2.31) 

n(2)=\ « * & , ( ^ - — j , (2.32) 

a2 

* ( 2 ) ^ / < % 2 ( £ ) — * ( * ) : (2.33) 

and c is the average density of particles in the assembly. 
However, / l l lC/iD is not the complete first-order 

contribution to the collision integral. From / [ 2 ] one 
also finds a term 

0/1[2c]_|_0/2[2<i]==(p( 

J 0 

S ) ( dri 
J 0 

dr2£&- r i i3o£ + (B) /n | i / 1 ( / - r ) . (2.34) 

Thus, adding Eq. (2.34) to Eq. (2.31) provides the 
following first-order kinetic equation, 

dfi Pi dfi 

dt m (9qx 

—=c[ dr\v(2)(v^+-Vpl,qA 
dqi Jo L \ m / 

x(2) 

w •] div^pi & - r / i ( * - r ) . (2.35) 

Calculation of the second-order contribution to the 
kinetic integral is considerably more complicated.16 

However, one can observe the general form of higher 
order terms even if analytic complexity precludes their 
explicit evaluation. I t is found that the expansion of 
the integral term may be written as 

Jo 

T(2k-2) 

*-i Jo ( 2 6 - 2 ) ! • 

/ d T d \ 
( p i ; — ; ) 
\ dpi m dqi/ 
X S - T / i ( / ~ r ) , (2.36) 

16 The second-order expression pertinent to an equation for the 
one-particle momentum density is presented in Appendix B, below. 

where 9TC[2fc] are system constants for which M—2k, 
and Op1*1 are derivative operators similar to those 
appearing in Eq. (2.31). Powers of r in the integrals 
increase directly with increasing powers of M. Terms 
in the Op[/b] which do not contain derivatives with 
respect to spatial coordinates do not contain the time 
r explicitly. Spatial terms in the operators appear only 
as powers of derivatives with respect to qi. Furthermore, 
every derivative term in qi is always coupled with a 
factor (r/m). 

I t is to be remarked that the expansions for proba­
bility densities and correlation functions to be obtained 
in the following sections will not be power series in any 
single parameter. There is no simple parameter available 
to characterize the interactions between particles; 
rather, expressions will contain the complicated parame­
ters of the type defined by (2.26). Notice that the latter, 
however, exist even for potentials having strong re­
pulsive parts. Due to the presence of the gk's in the 
integrand, one need not resort to cutoff procedures to 
insure the finiteness of these expansion quantities. 
Consequently, the individual terms in the collision 
integral expansion will also be finite. 

One wishes to apply these calculations to assemblies 
for which interparticle forces are characterized by a 
hard repelling core plus short-range attracting "tail ." 
For systems with complex force laws, it is impossible to 
determine the exact relationships between system 
constants of successively higher order. However, if one 
makes the following approximation for g2(p), which 
corresponds to an infinitely strong repulsive core 

g2(p) ( 
0 for p < p 0 , 

for p>po, 
(2.37) 

then, for example, the following typical ratio of a 
fourth-order term to a second-order term would be17: 

M(4,*)A(2)= dZgi(QZF9(S)y 
' - / • 

dtg2(QLF,J 

= o(eQ
2), (2.38) 

where €o is the depth of the attractive potential well. 
To be more explicit, in expansions for slow neutron 
scattering cross sections [cf. Eq. (4.7) belowj, for 
example, where it is necessary to compare terms pro­
portional to T? (2) with those proportional to /32/*(4,x)/&2, 
the pertinent expansion parameter is effectively /3eo.18 

III. SOLUTION OF THE KINETIC EQUATION FOR 
/i(xi;<|xi0); RELATED PROBABILITY DENSITIES 

AND CORRELATION FUNCTIONS 

a. Solution of the Firs t -Order Kinetic Equation 

I t is interesting to see whether the approximate 
kinetic equation for fh i.e., that equation obtained by 

17 M (4,#) is one of the system constants characterizing inter­
action strengths of fourth order. See Appendix B, below. 

18 k is the wave-number related to the momentum transfer 
experienced by the scattered neutron. 
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retaining only the first-order term in the potential-
energy expansion of the collision integral, can properly 
demonstrate relaxation processes which are expected 
to occur in the assembly. Specifically, let us consider 
the behavior of momentum densities and associated 
correlation functions when obtained from Eq. (2.35). 

The time-relaxed momentum density may be ob­
tained from the general ju-space density by integration 
over spatial coordinates 

$(pi; / |pio) = H n i - J rfqi<fqi0/i(xi;j|xi0). (3.1) 

(Thus, <£ is the conditional probability density that a 
particle will have its momentum in the neighborhood 
of pi a t time t, given that at 2=0 its momentum was 
pi0.) In virtue of Eq. (3.1) and Eq. (2.35), the following 
kinetic equation for <£> is obtained19: 

c\ i?(2)Vp
2+ divpp $ ( 0 = 0, (3.2) 

dt2 L m J) 
with initial condition 

*(0) = *»(p-p 0 ) . (3.3) 

The solution of the latter equation provides 

<l>(/) = cosh{^2[7;(2)Vp
2+x(2)/w div^p]}1 '2 

X 5 3 ( p - p 0 ) , (3.4) 
valid for all J>0 . 

One can use this expression to calculate the mo­
mentum auto-correlation function, T (t), which is defined 
by 

ir(/) = <pi(0)-Pl(0> 

= Idpodp(vpo){(2TrfnkT)~V2 exp(-^p0
2/2m)} 

X $ ( P ; / | P O ) . (3-5) 

Physical arguments require that, for interacting 
particles, 

limir(t)-+0. (3.6) 

But, from Eq. (3.4), one obtains 

i r (0= (3w//3) cos{lcX(2)/mJ/H} (3.7) 

which violates the condition given by Eq. (3.6). This 
suggests that simple coupling-constant expansions suffer 
not only from the logical difficulties already mentioned 
in Sec. I but, additionally, may also fail to provide 
mechanisms necessary to describe the relaxation of the 
assembly being considered. 

b. Kinetic Equation to Higher Orders 

Since the truncated equation, Eq. (2.35), is seen to 
be unsatisfactory for certain applications, there is 

19 In the remainder of this section, the subscript (1) is to be 
understood. 

reason to focus attention on the general kinetic equa­
tion. The latter may be written as 

/d pi d \ 
(-+ /i=£/£A(/)], (3.s) 
\dt m <9qi/ ;=o 

where the Ji are terms of the "potential-energy ex­
pansion," ordered according to increasing powers of 
the ratio of potential to kinetic energies. |Vo=0, J± is 
given by the expression on the right-hand side of Eq. 
(2.35), J2 appears explicitly in Appendix B, below.] 

One may search for an iteration solution to Eq. (3.7) 
having the form 

/i(x1 ;<|x l 0) = / 1 i « + / 1 [ " + / 1 P ] + . - . = £ / ! [ < ! , (3.9) 

where fi[>] is the expression to be obtained if the 
assembly were an ideal gas, and / i [ 1 ] , / i [ 2 ] , • • • represent 
successively higher order corrections to account for 
interactions between members of the assembly. 

Thus, the zeroth term of f\ is given by the solution of 

e PI a \ 
- + )/i [ 0 ] = / o [ / i ] = 0 

\dt m <9qi/ 

taken with the initial condition 

/ 1 N(0) = 8«(x I -x l 0 ) . 

The first correction is obtained by solving 

'd pi d 

\ c ^ m <9qi/ 

(3.10) 

(3.11) 

(3.12) 

subject to the initial condition 

/ i ^ f O j ^ O , for all xi. (3.120 

Similarly, the second-order correction is provided by 

/d pi a \ 
~ + )fi™ = JJLfii0]l+JiUi™l, (3.13) 

\dt m dqi/ 
with the initial condition 

/ i ^ ( 0 ) = 0. (3.130 

Higher order terms may be found from similar 
equations. 

These kinetic equations may be solved by taking 
Fourier-Laplace transforms and then inverting the 
resulting expressions. For / i [ ! ] , one readily finds the 
expected, ideal-gas result 

/ 1N(xi;^ |xi 0) = 5 ( q 1 - q l 0 - p 1 / / m ) 5 ( p 1 - p l 0 ) . (3.14) 

Of somewhat greater complexity, / i [ 1 ] is found to be 

f^K^u ^io)-cAV(2)\d^(t)Vp^p V^'-V^ 
I L m 

J+X(2)^divp-—div^ 
3m 

Xp5«5p (3.16) 
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with 
5 ^ 3 ( p ~ p 0 ) ; a^5 3 (q-qo) . 

Higher order terms could be calculated in the same way, 
although it is apparent that they would be quite 
complicated. 

Momentum densities can be found in direct corre­
spondence with the series solution for fi [cf., Eq. (3.1)]. 
It is found that 

*(p; /|p0)= { 1 + | ^ [ T 7 ( 2 ) V 2 , 2 + X ( 2 ) / W divpp] 

+ ^(6o4)+"-}S3(p-po). (3 '17) 
The ft terms are readily obtained from the collision 
integrals listed in Appendix B. It is of primary interest 
that one finds that the ft term of the first truncated 
equation, Eq. (3.4), does not appear in the exact 
expansion because the contribution from / i [ / i [ 1 ] ] is 
just cancelled by a term from /2[/i [ o 3] . 

The momentum autocorrelation function [cf. Eq. 
(3.5)] is found to be, in correspondence with Eq. (3.17), 

f ct2 3 c2 ft eft 
*(f) = 3mp-A 1 x(2)+ x(4)3+ 

I 2m 4tlm2 24w2 

X[-10r1x(4)+6r7(4,^)]+^(/6
J6o6)+- • • 

with the system constants being defined by 

r r d2 d2 

x ( 4 ) 3 ^ J dhj <*&g8(fc,&)—:*(&)—;</>&), 
<%/ ^ 

r d± 
x(4)=/<*&2({) 0(f), 

r d a3 

(3.19) 

>tt). 

Note tha t if x(4)a is approximated by [ x ( 2 ) ] 2 , ir{t) 
m a y be represented [ to 0(£4,e4)] by20 

T (t) = 3W/3-1 exp{ - ct2x (2)/2m} 
Xcos{6 1 / 2 [ f /3 - 1 x(4) - |7 ? (4 ,^ ) ]^ 2 /m} . (3.20) 

By performing analyses which correspond to termi­
nation of expansion (3.17) a t order eH2, other investi­
gators7 ,21 have already remarked tha t 

<K{t)~3mp~l exp{-ct2
X(2)/2m}. (3.21) 

However, it is also known 7 t h a t use of such an expres­
sion (purely Gaussian decay) to calculate the self-
diffusion constant for simple liquids provides values 
which have correct orders of magni tude, bu t which are 
somewhat higher t han experimentally observed 

20 Further simplification ensues if one notices, particularly at 
high temperatures or low density, x(4)~/&7(4,£#). Then, 

7r(/)«3m^r1e-ci2x(2)/(2m) Cos[0.577c1/2
x(4)1/2/r1/2/m]. 

21 P. G. de Gennes, in Proceedings of the Symposium on Inelastic 
Scattering of Neutrons (International Atomic Energy Agency, 
Vienna, 1960), p. 239. 

quantit ies. I t has been suggested tha t this discrepancy 
arises because Eq . (3.21) fails to account for negative 
correlations. On the other hand, the la t ter are well 
represented in Eq . (3.20), which has been obtained by 
retaining terms to higher order. This new form has the 
intuitively satisfying proper ty of representing the 
autocorrelation function by a damped oscillatory 
decay.22 

IV. SPATIAL DENSITIES AND 
CORRELATION FUNCTIONS 

Spatial densities can also be obtained in direct corre­
spondence with the expansion for / i (xi; /1 Xi0). I n this 
section, consideration shall be given to Gs(r,t), defined 
as the conditional probabili ty density for finding a 
specified particle in the neighborhood of the configu­
ration phase point (qi0+r) a t t ime t, given tha t a t t=0 
the same particle was a t qi0. 

Upon assuming tha t the systems under s tudy are 
uniform and isotropic, Gs does not depend on qi0 ; 
furthermore, Gs will be a function only of the absolute 
value of r. Hence, 

•A-J (3.18) G.(t,t)= / dvidvi^mkTyih-^i^ 

X/i (p i ,q i 0 +r;* |q i 0 ) pi 0 ) 

i=0 
(4.1) 

with 

G . U ( r , t ) s jdp1dvo(2TmkT)^e-^"2'2mf1^(vi,i;t\p0,0). 

(4.2) 
Thus , for the zeroth (ideal gas) term, 

Gs to] (r,t) = Imp/ (2irP)Jih-m^i <2(2>. (4.3) 

The first-order correction, i.e., t ha t through the second 
power of the forces, is found from Eq . (3.15) to be 

G.W(r,0 = 
c/*p»(2) x(2)"| — v! 

3/3 J 
_ <# p(2) 

2w2L 4 
?G.m(r,t). (4.4) 

Details of calculations of higher order terms may be 
found elsewhere.28 T h e interesting point, however, is 
tha t i t has been found tha t the expansion for Gs(r,t) 
may be pu t in the form 

G.(r, /)=Z P'DBWG.W(R,t), (4.5) 

22 In a relatively dense medium, one would expect the average 
behavior of the particles to contain contributions representative 
of vibration as well as diffusion. After moving away from their 
initial positions, a certain number of particles would have their 
directions reversed as a consequence of interaction with the 
collective force field of neighboring particles. Such effects are 
clearly present in cell models of liquids. [For a more thorough 
discussion of these points, see the article by Rice (Ref. 7)]. 

23 R. J. Nossal, dissertation, University of Michigan, 1963 
(unpublished). 
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where 

22s (m^r/t, G8 m (R,t) s [m0/ {2irt2)Ji2e-R2t2 (4.6) 

and the DR
[n] are purely differential operators in R 

and are not explicit functions of /. The differential 
order of D[n] is <2n. 

One can use Eq. (4.5) to obtain an asymptotic 
inverse temperature expansion for the incoherent cross 
section for the scattering of low-energy neutrons. The 
quantum mechanical incoherent scattering function, 
•J inc 

(k,co), is denned by 

S i n o M = (27T)-1 f dTdte&'t-^g.fat), (4.7) 

with 

X S ( r ' - q y ( 0 ) ) . (4.8) 

Difficulty arises when trying to evaluate Eq. (4.7) 
because the delta functions in Eq. (4.8) do not commute. 
However, a classical approximation to the incoherent 
scattering function, denoted by SinC

cl(k,w), may be 
obtained from Eq. (4.7) by replacing gs(r,*) by G8(r,t). 
Correspondingly, the classical approximation to the 
"intermediate scattering function'' is defined as 

# in 0
Gl(k,t)= dteik-rGs(r,t). 

From Eq. (4.5) it is determined that 

(4.9) 

4inocl(k,0 = <r"'s*i/(2m'!) £ P»wW(tk/(mpyi*), (4.10) 

where the w[n](tk/ (m^)112) are polynomials in tk/(ml3)112 

which correspond to the Din]. For example, 
w[n]^ — t2k2/(m^) corresponds to the differential oper­
ator z>i2[n]~vy. 

It has been suggested that one of the reasons for 
investigating slow neutron scattering is to facilitate a 
deduction of the form of G(r,t) for particular scattering 
systems. However, almost all analytic studies of this 
phenomenon24,25 have provided expansions for încOM) 
or SinC(k,w) and have not yielded G8(t,t) directly. 
Perhaps Eq. (4.5) and Eq. (4.10) will aid in the de­
duction of the latter from calculations already available 
for the scattering functions. 

24 P. Schofield, in Proceedings of the Symposium on Inelastic 
Scattering of Neutrons in Solids and Liquids (International Atomic 
Energy Agency, Vienna, 1960), p. 39. 

26 M. Nelkin, in Proceedings of the Symposium on Inelastic 
Scattering of Neutrons in Solids and Liquids (International Atomic 
Energy Agency, Vienna, 1960) p. 3. 

A number of studies26,27 have been made in order to 
obtain the exact quantum scattering function in terms 
of corrections to the expression given by the classical 
approximation. Rosenbaum26 has succeeded in ex­
pressing corrections to the classical scattering function 
as a power series in h2, having shown that 

Sinc(k,a>) = e^2e-^ ( 8 m ) 

X *~> in 

ctff?x{2)( 0 
•'(k,«)+ T7— ̂  )

l/2 

6 

X 

48 \2irmk2 

w2m/3 h2k2p\ 

e-mj9a>2/(2A;2) 

1 + )+o(¥) \. (4.11) 
\ k2 Sm / J 

Further investigation may now be made of the 
conditions under which Eq. (4.11) may be useful for 
the analysis of experiments. The expansion has not yet 
been explicitly developed beyond the second power in 
h. However, it may be surmised that the exact scat­
tering function can probably be expressed as a sum of 
terms, each of which is proportional to one of the 
system constants defined by (2.26), so that 

5inc(k,co) = e^2e-^^mlSino
Gl(k,io) 

+0i(M,w)x(2)+a2(M,w)i7(2) 
+a3(M,co)x(4)H etc.]. (4.12) 

Thus, for example, using Eq. (4.5) and Eq. (4.8), one 
finds 

r m T^ 
S- C 1 ( Y 0)) = g-m/3«2/2ft2 

m° {X'} L(2dP)J 
r c I lOnipa)2 m2l32o)A\ 

X 1+ (3 + )x(2) 
L 24£ 2 \ k2 ¥ J 

+terms in the "fourth power of the forces,, . (4.13) 

[Here, the high-temperature limit has been taken, i.e., 
it has been assumed that ??(2)«/3~1x(2).] Hence, it is 
seen that the same system constants which demonstrate 
the deviation of 5inc

cl from the form for an ideal gas 
are also intimately involved in expressing the intrinsic 
quantum nature of the scattering process. To be con­
sistent, one must keep terms in the h series expansion 
to the same order in coupling constant as is needed to 
express Gs

cl(r,t) to a given accuracy. 
Consequently, it must be concluded that generally it 

is impossible to separate quantum effects in the cross 
section from contributions due to interactions between 
particles. For example, upon inserting Eq. (4.12) into 

26 M. Rosenbaum, dissertation, University of Michigan, 1963 
(unpublished); see also, R. Aamodt, K. M. Case, M. Rosenbaum, 
and P. F. Zweifel, Phys. Rev. 126, 1165 (1962). 

27 K. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1960). 

file:///2irmk2
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Eq, (4.11), it is found that it follows that 

Sinc(k,a>) = lm(3/(27rk2)J/2e^2e-&2k2!8™ 

- c f tc(2) / 10w/3co2 w 2 0 V \ 
H 3 + )A2(ft,a),j8) 

24&2 \ &2 ¥ J 
X 

/n(X n ; 01 Xso) — / axs+i0- • 'dxnofn\Xnl 0|Xno) 
CJ8X(2)/ 10w/3co2 m2/32a 

X/n | s ^ ] (x s + io , - - ,x n o iX S 0 ) . (A4) 

(4.14) /»i*[eql(xM-i>* * -,xn\X8) is the equilibrium conditional 
full-system probability density for finding particles 

_ , . (s+1, - —,n) in the neighborhood of (x s + i ,-•-,x„), 
In the above expression, g i v e n ^ p a r t i d e s ( 1 ? . . . ^ a r e l o c a t e d a t ( x ^ . . . ^ 

A 2 ( W ) s 14 
/3&2£ l-co2w/3/(^2) + ^ W 8 w 

2w L.3 - 10w/3a>2/ ( £ 2 ) + m W / £ 4 J 

respectively. 
But, 

(4.15) / . | s
[ e q 3(x s + i0 , - • •,xno|Xso) = / e q W(X. 0 ) / / e q

[ s ] (X s o ) , (A5) 

represents the quantum deviation of the second term where fecl
[s](XS0) is defined by 

in the scattering function. I t would be unity only if no 
correction were necessary. r 

Yet, it is also seen from Eq. (4.15) that for small /eqw(X.0)== / dxs+w - .rfxno/eqIn](Xno). (A6) 
momentum and energy transfer, for which fih2k2/2?n<s,l, 
quantum corrections to the scattering function are much . . N̂ 

less significant than the normal corrections due to Therefore, in virtue of Eq. (A2) and Eq. (AS), 
interactions between particles. Under those conditions, f (\ n\Y \ — Tf inir \/ 
Eq. (4.11) offers a useful approximation. Jn{A"'' U ' A s ° j ~ L / e q ( X l ° ' ' ' ' >x°<»x°+i>''- ' * " " 

s 
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f(x)5(x-a) = f(a)5(x-a) (A8) 

APPENDIX A: INITIAL CONDITIONS 
which, when taken with Eq. (A7), is justification for 

In the preceding analysis, the following expression t h e c h o k e o f t h e expression given by Eq. (Al). 
was asserted as the initial condition for the ^-particle 
density [cf., Eq. (2.7)]: 

/ (X -nlY w r / M( \/-f r.]/ M APPENDIX B: SECOND-ORDER 
J n\A-n j U | AS0J — [_/eq \Xl, * * ' jXnJ//eq \X-1, ' ' * jXs) J COLLISION TERMS 

s 
X H 5(xi—Xi0). (Al) The kinetic equation for the one-particle momentum 

i==1 density may be written as follows: 

The choice of this function shall now be justified. 
I t is certainly true that ^ . . . * - . N . ,. 

/ n ( X n ; 0|Xwo) = n 5 ( x ~ x J . (A2) 

where [cf., Eq. (3.10), Eq. (2.35)], 
Hence, as a consequence of the following general 
relationship for conditional probability densities J o = 0 (B2a) 

fx\Y(*\y)= fx\Y.z(x\y,*)fz\Y(z\y)dz, (A3) J^cJ ^ r ( r ? ( 2 ) V m
2 + x ( 2 ) / m d i v p l p i > 1 ( / - r ) . (B2b) 
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The second-order terms have been found to be28 pressions have the following definitions: 

r< f rdV(f)-f 
Js=nr*l (fr(|T2)[ca2+c2(B2>(<-r), (B3) x(2,ay;2> ay)aj d & , ( 0 | — — J 

:(2,axr;2,**)a/<%,($) 

A 1589 

where Ct2 and (B2 are denned as follows 
If one designates 

#*tt)-|2 

d24> 
¥(4,*y; 4,^)3* <%2(£)—-[?,({)]» (B.7) 

ftsdiVftPi; 02^VPl
2; e^tStnp-i+p!*), (B4) 

then Cfc2 and (B2 can be expressed as 

+X(2,sy; 2,xy)[3d<fls-3w/3-102+30i2-0i] 
+x(2,xx; 2,x#)[3w/r102+30i2+0i] 
+w2^(4,^)[7^2(9i-24^2]-w2^(4,^,^)[2(9^2] 

+m2ix(^x)62
2 (B5) 

and 

(B2=x(4)3[3^2]+w2^(4)8[6^1]-3^2] 
+m2M(4)3[3^2

2]-m[x(2)01+m77(2)^2]
2. (B6) 

The system constants appearing in the above ex-

" - D e t a i l s of the methods of reduction to integrals of this type a n d *&> ^ x ( 4 l ' ^ * ' ^ ^ ( 4 ) 8 T , ^ ^ ^ ^ 
may be found elsewhere (cf., footnote 22). t ex t above b y E q s . (2.32), (2.33), and (3.19). 

M(4,x)^J^2(?)C^(0]4 

r 32*(&) 
*(4)3^ / <%rf&ft(&,&) L^fe)]2 

M(4)3^ f^2^?3g3(?2,?3)C^(?2)]2C^fe)]2 , 
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Hall Coefficients of Liquid Metals*f 
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The Hall coefficients R of 9 liquid metals were accurately measured using an alternating-current-alternat-
ing-magnetic-field method. Four of these metals have R=Ro=l/nec, which is the value predicted by the 
free-electron model of liquid metals. The Hall coefficients of these metals (in units of 10~5 cm3/C) are Hg, 
- 7 . 6 ; Cd, —7.2; Zn, - 5 . 2 ; and Sn, - 4 . 4 . The other five metals were found to have R/R0<i, with Ga, 
- 3 . 8 3 ; In, - 5 . 3 ; Tl, - 4 . 8 ; Pb, - 3 . 7 ; and Bi, - 3 . 0 . The absolute experimental error for Ga is ±2 .5%. The 
experimental error for all other metals relative to Ga is approximately ± 1 . 5 % except for Pb (±12%). The 
free-electron model of liquid metals is discussed. The value of R/R0 is compared with the magnitude of the 
mean free path. Comparison is also made with the Hall coefficients of other allotropic forms of these metals. 

INTRODUCTION 

ONE of the best means for gaining information about 
the electronic properties of liquid metals is the 

measurement of the Hall coefficient. The importance 
of the Hall coefficient R lies in the fact that the free-
electron theory predicts Hall coefficients equal to the 
free-electron value R^ 1/nec, where n is the concentra­
tion of valence electrons. A careful study of the devia-
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for the degree of Doctor of Philosophy at the University of Chicago. 
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tions of the Hall coefficient from RQ is therefore a sensi­
tive tool for testing the validity of the assumptions 
underlying the free-electron theory. 

Early attempts to measure the Hall coefficient of 
liquid metals failed because of magnetohydrodynamic 
circulating currents and secondary thermal effects, as 
well as insensitive detecting equipment. In measure­
ments of the Hall coefficient of Hg, for example, des 
Coudres1 in 1901 found a nonzero Hall coefficient, but 
two subsequent workers in2 1914 and3 1931 failed to 
find any measurable Hall coefficient. Indeed, until 1960 

1 T. des Coudres, Physik. Z. 2, 586 (1901). 
2 W. N. Fenninger, Phil. Mag. 27, 109 (1914). 
3 J. Kikoin and I. Fakidow, Z, Physik 71, 393 (1931). 


